
TNCG14

Soft Shadows in real time by Imperfect Shadow Maps and Screen

Space Ambient Occlusion

Johan Beck-Norén, johbe559@student.liu.se
Andreas Valter, andva287@student.liu.se

September 9, 2013

Abstract

This report describes a method for simulating
low frequency soft shadows in a scene by creating
shadow maps from a point representation, and
screen space ambient occlusion to take care of
high frequency shadows. This makes it possible
to increase the light source count in the scene
and make the lighting converge towards a real
representation of area lights while still running
in real time.

1 Background and prior work

Soft shadows is the result of area lights hit-
ting the object from different angles, creating a
shadow with two stages, umbra (2 in figure 1)
and penumbra (1 in figure 1). Umbra describes
the part that is fully in shadow, the penumbra
region is partially hidden from the light. The

Figure 1: Showing shadow behavior, 1 is the region
called penumbra and 2 is called umbra. Image from
[3].

penumbra part is only modeled when we deal
with soft shadows. This effect is something that

is important in computer graphics for creating
a believable scene. For offline rendering tech-
niques like ray tracing it is achieved without a
lot of extra work. But when dealing with real
time rendering, it is expensive to achieve some-
thing that is even remotely close to reality.

Hard shadow approaches only simulate the
umbra. The simplest approach to this would
be planar shadows which is projection of objects
onto other objects. This approach creates hard
shadows between objects, but the technique does
not support self shadowing and also requires a
planar surface for the shadow.

A more advanced idea is to render depth maps
from the lights and projecting them on the scene,
this technique is called Shadow Mapping. By
comparing the length between the light source
and the point it is possible to decide if each point
is visible from the light source or not. But this
technique still does not provide a soft shadow,
at least not without modifications.

2 Imperfect shadow mapping

The ideal would be to create a lot of shadow
maps from each light source to simulate area
lights as close as possible. But due to the fact
that shadow maps are quite expensive to create,
it is impossible to do this without modification
with the hardware that is available at the mo-
ment. The idea behind the Imperfect shadow
mapping algorithm is to create a lot of low res-
olution shadow maps, using a simple point rep-
resentation of the scene, thus allowing for fast
rendering of complex scenes.

1



2.1 Scene Point Representation and
Imperfect Shadow Maps

To reduce the computational load we simplify
the scene. We do this by approximating selected
triangles in the scene with points of roughly uni-
form density, as in [2]. Triangles are chosen ran-
domly with probability weighted against the tri-
angle’s surface area. Shadow maps are then cre-
ated from this point representation. For each
virtual point light (VPL), the points are splatted
into the depth buffer, using a geometry shader,
by a factor proportional to the distance squared
between the VPL and the points representing the
scene.

Since we are using a point representation of
the scene the depth maps generated from the
VPLs often contain gaps. This is remedied by
using a pull-push interpolation algorithm [1] to
fill in some of the gaps. The algorithm consists of
a pull phase and a push phase. Using an image
pyramid in bottom-up order, the pull phase re-
duces the depth map’s resolution by a factor och
2 for each step. The downsampling has a depth
threshold condition for deciding which pixels are
to be used to average the pixel on the coarser
level (Figure 2).

The push phase works with the built image
pyramid in top-down order, from coarser to finer
levels. In this phase, only pixels outside a set
depth threshold compared to the corresponding
pixel in the coarser pyramid level are considered.
The push phase interpolation scheme can be seen
in figure 3.

When used for lighting computations, the
shadow map needs to cover a full hemisphere of
depth information.

2.2 Screen Space Ambient Occlusion

Screen-Space Ambient Occlusion (SSAO) is a
rendering technique for approximating the ambi-
ent occlusion in a computer graphics scene in real
time. It works under the assumption that points
in the scene which are close to other points will

Figure 2: Pull-phase interpolation. Image from [1].

Figure 3: Push-phase interpolation. Image from [1].

be more occluded from the ambient light present
in the scene. The first implementation of this
technique was used in the game Crysis released
in 2007 (Figure 4). The implementation used
the depth buffer to sample the depth for a pixel,
and then sample the depth of surrounding points
within a hemisphere in three dimensions oriented
along the pixel’s normal vector. From these sam-
ple points, the pixel’s occlusion factor would be
calculated and later subtracted from the ambient
portion of the scene’s final lighting.

3 Implementation

3.1 Virtual Point Lights

Virtual point lights (VPLs) are created inside
the light source. In our implementation we cre-
ate them in a defined area above the scene to sim-
ulate sunlight. It is also possible to spawn them
with environment mapping using a sky dome and
extracting light sources from it. The simplified

2



Figure 4: SSAO as first implemented by Crytek in
2007.

point representation of the scene is then rendered
from each of these positions using a full hemi-
sphere for depth information. This is done by
changing the field of view in the projection from
each of the light sources.

3.2 Scene Point Representation and
Imperfect Shadow Maps

For the point representation we randomly choose
a triangle with probability based on the area of
each triangle, making it more plausible that a
larger one is picked, to represent with a point.
The points on each selected triangle is gener-
ated with uniformly distributed homogeneous
barycentric coordinates with the pseudo code in
Listing 1. A geometry shader is then used to
convert each point to a quad, with the same nor-
mal as the triangle that the point was generated
from. This quad is then rendered as a circle in
the fragment shader. By doing this, the points
are generated quickly in parallel on the GPU.

Listing 1: Code for finding random point on trian-
gle.

t1 = random (0 , 1)
t2 = random (0 , 1)
i f t1 + t2 > 1

t1 = 1 .0 − t1
t2 = 1 .0 − t2

t3 = 1 .0 − t2 − t3
p o s i t i o n = vert1 ∗ t1 +

vert2 ∗ t2 + vert3 ∗ t3

We create many low resolution shadow maps,
one for every VPL. These low-resolution shadow
maps are stored in a single high-resolution tex-
ture. Since we use a sparse point representa-
tion to approximate the scene, there will be gaps
and missing parts in the depth maps created.
To remedy this we use a pull-push interpolation
technique [1] to fill in these gaps. The pull-push
interpolation is implemented in shaders and is
applied after creating the point representation
and before projecting the shadow maps on the
scene. After the projection, all shadow maps
are stored in an array of 2 dimensional textures.
We then send in all shadow maps, together with
the transformation matrix for each one of them
to the shader responsible for merging them to-
gether and calculating the shadow value. For
large amounts of shadow maps, this creates a
problem because shaders have a maximum num-
ber of allowed uniform input variables. To ac-
count for this, the transformation matrices are
transferred to the GPU as uniform buffers which
allows for a larger amount of available uniform
data which allows for enough shadow maps to be
used.

3.3 Screen Space Ambient Occlusion

In the implementation of SSAO we store the
scene’s depth buffer, per-pixel normals, and per-
pixel positions as textures. The textures are
downsampled to half their original resolution.
This is in part to save memory and computation
time, and in part because the SSAO generally re-
sults in some noise and artifacts. If the textures
were not downsampled, we would have to apply
a blur to the resulting SSAO to remedy this. We
still apply a blur, but with a smaller filter kernel
than would be needed for full sized textures.

We generate a 64x64 texture of random values
in the interval [−1, 1] on the CPU and tile it over

3



the depth/normal/position textures and use this
to randomly sample depth values for a pixel. The
usage of textures in this way results in that we do
not perform a sampling within a hemisphere in
3D, as the original implementation, but instead
use a deferred approach to the technique.

Artist-controllable variables include sampling
radius, sampling cone angle, intensity, and at-
tenuation. All calculations are done in parallel
on the GPU using shaders.

(a) No SSAO

(b) With SSAO

Figure 5: Comparison showing the contribution of
our SSAO to a scene’s ambient light.

3.4 Multicore

Throughout the implementation, we are taking
advantage of both the full power of the CPU
and GPU. During the initialization part, we
use OpenMP for generating points on triangles.
After the initialization process, we perform all
heavy computations on the GPU. This means

that we are using the power of the graphics card
to render our scene in an highly optimized way.

4 Results

Figure 6 shows three comparison shots. Figure
6(a) shows the scene as-is, with textures and
no lighting applied. Figure 6(b) shows our im-
plementation of soft shadows applied using 105
VPLs. The bottom figure 6(c) shows the same
scene as figure 6(b) but with SSAO added. No-
tice the detail of the creases in the hanging cloths
and the added dark areas around the pillars com-
pared to figure 6(b).

The scene was run on a computer with an
Intel Q6600 CPU, 4gb RAM, and a NVidia
GeForce 560Ti graphics card, and ran at around
25 frames per second at a resolution of 1280x720
pixels.

5 Discussion

As is shown in Figure 6, the Imperfect Shadow
Mapping algorithm is a good way to simulate
soft shadows in real time. The problems pre-
sented in the original report with having high
detail shadows were also seen in our simulation.
The implementation of Screen space ambient oc-
clusion, shown in Figure 6(c) seems like a good
way to increase the lost details for the shadow.
It offered a good and cheap way to increase the
over all quality of the shadows and make the sim-
ulation more believable.

4



(a) No lighting

(b) Soft shadows

(c) Soft shadows with SSAO

Figure 6: Comparison figures showing a scene with
(a) no lighting, (b) our soft shadows implementation,
and (c) soft shadows with SSAO.

References

[1] R. Marroquim, M. Kraus, and P. R. Caval-
canti. Efficient point-based rendering using
image reconstruction. pages 101–108, 2007.

[2] T. Ritschel, T. Grosch, M. H. Kim, H.-P.
Seidel, C. Dachsbacher, and J. Kautz. Im-
perfect Shadow Maps for Efficient Computa-
tion of Indirect Illumination. ACM Trans.
Graph. (Proc. of SIGGRAPH ASIA 2008),
27(5), 2008.

[3] W. J. Youmans. Images and shadows. Pop-
ular Science Monthly, 4:671, 1874.

5


	Background and prior work
	Imperfect shadow mapping
	Scene Point Representation and Imperfect Shadow Maps
	Screen Space Ambient Occlusion

	Implementation
	Virtual Point Lights
	Scene Point Representation and Imperfect Shadow Maps
	Screen Space Ambient Occlusion
	Multicore

	Results
	Discussion

