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Abstract

This report begins by outlining an introduction to the field of global illu-
mination for computer graphics and discussing some basic concepts. The
background section goes on and describes algorithms and techniques imple-
mented for this project in more detail, specifically what methods and tech-
niques were used to approximate global illumination in a computer generated
scene. The report focuses on the techniques required for an implementation
of a stochastic global illumination algorithm by using Monte Carlo integra-
tion to estimate a solution to the rendering equation, and presents the results
from our implementation using that technique. It will cover topics like in-
tersection testing, anti-aliasing, seperating the rendering equation into direct
and indirect illumination integrals, as well as and other techniques that has
been implemented during the project. Results are presented in the form of
images rendered with varying settings and evaluated, along with data tables
describing variable values compared to rendering times. The report is con-
cluded by a discussion section where we discuss our implementation along
with possible improvements that could be the subject of further work.
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1 — Introduction

Realistic lighting in computer graphics scenes has been a challenge and a big
area of research for many years. The equation commonly used describing
light propagation through a scene is recursive in nature and infinite, which is
something that computers can not handle. Researchers has found different
methods to estimate the analytic solution. These methods are iterative and
use computing power to calculate these estimates that converge towards the
real solution.

Many of these are so called ray tracing methods where rays are traced
from the viewer into the scene. When rays hits surfaces in the scene, new
rays for reflection and refraction are spawned. If a ray hits a light source
or reaches a given recursion depth it terminates. These are then combined
using importance to create the final image. Other methods start from the
light source and from there propagate through the scene. Both of these
methods are called global illumination methods because they take the whole
scene into consideration. In this section we will give a short overview of some
of the different approaches and techniques in global illumination.

1.1 Whitted ray tracing

The Whitted ray tracing method described by Turner Whitted in [2] was the
first global illumination method that took the whole scene into considera-
tion when calculating intensity values. In previous so called ray marching
solutions, the calculations stopped as a ray hit a surface and local lightning
models like Lambert’s cosine rule to model perfectly diffuse reflections, or
the Phong model.

I = Ia + kd

j=ls∑
j=1

(N · Lj) + ks

j=ls∑
j=1

(Rj ·V)n (1.1)

The Phong model given by Equation 1.1 is a local lighting model. It
assumes that each light source Lj is located at a point with infinite distance
to the objects in the scene. The total reflected intensity I is calculated
using the contribution by ambient light Ia together with two terms, one term
for diffuse light and one specular term. The two constants kd and ks are
reflection constants that regulate their contributions. The diffuse term uses
the Lamberts cosine law to describe the color using a dot product between
the normal and the light direction to calculate if that part of the surface is
directed towards the light source.
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The specular term uses the direction that a perfect reflection V̄ from the
light source would take on the surface together with a ray towards the viewer
V̄ .

Whitted extended the previous techniques and allowed for rays to bounce
in the scene and thus creating the basis for global illumination. The solu-
tion he presented allowed for true reflections, shadows and refractions. By
using the Phong model on each ray hit and spawning new rays recursively
for reflections, shadow rays and refractions, a method for simulating global
lightning is created.

When using several rays in the scene, a term called importance is intro-
duced. It states that the total importance of all rays for each pixels is one.
If multi sampling is used, importance is divided among the rays. The impor-
tance flows in the opposite direction as the light, from the camera and into
the scene.

1.2 Radiosity

Radiosity is an algorithm for global illumination which only handles diffusely
reflected light, and is therefore not dependent on any camera position or
direction. This means that the solution converges toward a steady state and
can for example be pre-computed for use in static scenes. The algorithm
works by splitting the scene geometry into a number of finite area elements
called patches and solves the rendering equation for surfaces that diffusely
reflects light. A visibility factor, called form factor, is used to describe a
patch’s visibility toward all other patches in the scene. The size of a view
factor is dependent on the distance between any two patches, their orientation
in relation to each other, partial or total occlusion etc. and describes the
amount of radiance leaving a patch j arriving at patch i for all patches
j ∈ N for a scene consisting of N number of patches. The form factors make
up a system of linear equations, which when solved produces the radiosity
for each patch. The process can be iterated to perform several passes and
allowing for multiple bounces to be computed.

1.3 Monte Carlo ray tracing

A rendering equation (1.2) presented by Kajiya in [4] describes a full global
illumination solution for a given scene. It is an integral equation called
a Fredholm equation of the second kind because of the unknown radiance
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quantity, L(...), appears on both sides of the equation. This makes the equa-
tion recursive, corresponding to a ray’s multiple bounces through a scene,
and makes the equation very hard to solve analytically. It is described below
using the same notation as Dutré et al. in [1], and we will use this notation
throughout this report.

L(x→ θ) = Le(x→ θ) + Lr(x→ θ) =

Le(x→ θ) +

∫
Ωx

fr(x,Φ→ θ)L(x← Φ)cos(Nx,Φ)dωΦ

(1.2)

The Monte Carlo integration method introduces a method for calculating
an estimated value for an integral expression. This is done by sampling the
integral function by random discreet numbers, and as the number of samples
increase the produced solution’s accuracy increases as well.

I =

∫
f(x)dx (1.3)

〈I〉 =
1

N

N∑
i

f(xi)

p(xi)
dx (1.4)

The intergral in Equation 1.3 with a value of I can me estimated as in equa-
tion Equation 1.4 as 〈I〉 by N number of samples distributed according to
the pdf (probability distribution function) p(xi). This method will later be
used to estimate the solution to Equation 1.2.

Similar to a Whitted ray tracer, a Monte Carlo ray tracer starts by shoot-
ing rays from a virtual camera through a view plane into the scene. One
difference is that Monte Carlo ray tracing handles diffuse interreflections and
specular-diffuse surface interreflections, color bleeding between objects, and
soft shadows by sampling area light source surfaces for each ray intersection.
As the number of samples increase the more accurate the integral estimation
will be and the algorithm produces noise if the number of samples are too low.
There are several ways to reduce the noise. One could separate the calcula-
tions for direct and indirect illumination, using shadow rays to more quickly
compute direct diffuse illumination and soft shadows. Sampling directions
for diffuse indirect illumination could be chosen in more informed ways to
reduce the noise. There have also been research on methods combining the
benefits of radiosity with the benefits of ray tracing.
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1.4 Two-pass rendering

Since a radiosity method handles diffuse reflections rather well, and a ray
tracing method handles specular reflections well. a lot of research has been
done to find ways to combine these two methods. One of these methods
descibed by Smits et al. [7] works from the fact that radiosity algorithms
propagate light from a light source through the scene, while a ray tracing
algorithm only cares about the light that reaches the eye. The method in [7]
consists of splitting the rendering into two passes. The first pass uses a ray
tracing approach to emit importance from the eye through the scene. This
importance is then used to refine the patches used for the second pass, a
radiosity pass. By subdividing patches in parts with high importance, and
ignoring patches in areas with little or no importance, great speedups can be
achieved.

1.5 Photon mapping

Monte carlo methods for ray tracing suffers from noise in the final results if
not enough samples are used when calculating radiance from diffuse indirect
illumination. Photon mapping is a two-pass global illumination method pre-
sented by Jensen [3] which computes diffuse indirect illumination faster than
a Monte Carlo solution. The method works by emitting packets of energy
(light) from the light sources toward different objects in the scene. Different
packets can be used for different materials, e.g. a high resolution photon map
can be used for caustics that are visualized directly, while a lower resolution
map can be stored for later use in the ray tracing step. Shadow photons can
be used to more efficiently compute shadows, and be used as directional in-
formation to produce more accurate sampling directions during the rendering
step. The method has been shown to reduce rendering time as well as the
noise in the final image when used in a Monte Carlo ray tracer algorithm.

1.6 Iso surface ray tracing

An iso surface is a surface described implicitly by a mathematical expres-
sion or equation. An iso surface representation of a scene is preferable over
polygonal objects in a ray tracing context for a few reasons. Implicitly de-
scribed primitives and objects usually scale well if the resolution or precision
of the illumination algorithm should increase, since they are not bound by a
finite number of triangles, but rather a mathematical description. They are
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also easy to define and describe, and are rather straight-forward to calculate
ray intersections against. From an intersection calculation we need to decide
weather a ray is intersecting the surface and if so at what position. The
surface normal for that position is also needed.
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2 — Background

In this section we will talk about the methods we have implemented in our
Monte Carlo ray tracer using C++. Although there are several approaches
to some of these methods we will only talk about the methods we chose to
implement in this project.

2.1 Scene storage

When calculating global illumination for the scene, all objects need to be
taken into consideration when calculating the illumination for one part of the
scene due to the recursive nature of Equation 1.2. For ray tracing solutions,
this means that as rays bounce inside the scene the first intersecting object
needs to be located. A näıve solution would be to store all objects without
any information about where in the scene they are located. When traversing a
ray through the scene, the algorithm would have to check against all objects,
even if almost all of the checks would be misses. For a simple scene with
only a few implicit objects this is a good solution. The overhead when
dealing with an more complex storage method would make it slower than
simply checking against all objects in the scene. But when using a more
complex scene consisting of models with hundreds of thousands of elements,
it is possible to take advantage of the spatial information of each element to
subtract a small subset and only do collision tests against those.

2.1.1 Bounding box

An axis aligned bounding box is an essential part of most scene storage
methods. This is the smallest box with its axes aligned to the Cartesian
coordinates axes that can encapsulate the primitive that owns the bounding
box. The bounding box will not be the smallest box that can encapsulate
the primitive but the intersection tests are much simpler compared to doing
collision tests against arbitrarily rotated primitives.

In reality, any simple shape could be used to define the bounding box of
another object. The general rule is that it should be much simpler to calculate
intersections against that, compared to the primitive that it surrounds. The
choise of bounding box is usually dependent on the encapsulated primitives
shape, the importance of amount of extra volume in the bounding box or
constraints in the storage algotithm.
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2.1.2 Bounding volume hierarchy

Bounding volume hierarchy (BVH) uses a tree structure with bounding vol-
umes like axis aligned bounding boxes. Small sets of primitives are divided
into different bounding volumes. These small volumes are then combined to
larger bounding volumes recursively until there is only one bounding volume
left surrounding the entire scene. By using this technique, it is known that
if the ray does not intersect a larger bounding box, the child boxes within
that larger box can be ignored as well.

2.1.3 Octree

The octree method uses the bounding boxes in a slightly different way than
described in the previous section. The scene is encapsulated into a large
bounding box. When each primitive is added, the scene bounding box is sub-
divided into eight sub-volumes recursively until the current level of bounding
boxes are to small to fit the primitive. The primitive is then added to the
level above that as a leaf. Using this structure, it is possible to traverse the
ray through the volume and, just as when using the BVH tree, large parts
of the tree can be ignored by checking only parent nodes for intersection.

2.2 Intersection

The implementation needs to be able to handle several different intersection
algorithms, one for each type of primitive in the scene. To make sure that all
kinds of primitives are supported, inheritance is used where each primitive
inherits from an abstract class. During rendering calculation, the ray tracer
calls an abstract method for calculation of intersection points on the given
primitive and therefore the implementation supports all primitives that can
define a intersection method. Each of these methods uses an incoming ray
with a direction vector d and a origin o described by Equation 2.1. The
intersection methods has to calculate the normal of surfaces to decide the
direction of new rays spawned at the intersection point.

p = o + td, t ≥ 0 (2.1)

2.2.1 Implicit sphere

A sphere is defined by a position vector c of its center and a radius scalar
r. The goal is to find if any t in Equation 2.1 satisfies Equation 2.2. By
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inserting Equation 2.1 into Equation 2.2, we receive an expression for solving
the intersection point described by Equation 2.3.

(p− c).(p− c) = r2 (2.2)

(d · d)t2 + 2(o− c) ∗ dt+ (o− c) · (o− c)− r2 = 0 (2.3)

There are two solutions to Equation 2.3 described in Equation 2.4 with
coefficients described by Equation 2.5. When intersecting, they represent
the entry and exit point on the sphere surface. The collision point is decided
dependent on if the solution is real, this means that B2 − 4AC >= 0 is true
for all rays that collide with the sphere.

t0 =
−B −

√
B2 − 4AC

2A
(2.4a)

t1 =
−B +

√
B2 − 4AC

2A
(2.4b)

A =d · d (2.5a)

B =2(o− c)d (2.5b)

C =(o− c) · (o− c)− r2 (2.5c)

When both values of t are calculated, the lowest value is used for the
collision point. The normal is calculated by normalizing the point on the
surface and subtracting the center of the sphere.

2.2.2 Quadrilateral

The collision tests for quadrilaterals follows the technique presented by A.
Lagae and P. Dutré [5]. A quadrilateral is described by four corner points
v00, v01, v11 and v01, one for each edge, listed in a counter clockwise order.
These must all be on the same plane and create a convex shape. The method
for collision uses bilinear coordinates to calculate the point on the plane, but
this is an expensive operation and therefore, rejection tests are made early
to make sure that these are only calculated when it is really needed. The
quadrilateral is divided into two triangles T , T ′ and the collision test is de-
cided comparing the barycentric coordinates with the two triangles.

Each point Q(u, v) in the plane Q can be described by Equation 2.6. Here
u and v are the bilinear coordinates of Q(u, v). If u and v lies in the range
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[0..1], then Q(u, v) lies inside Q.

Q(u, v) = (1− u)(1− v)V00 + u(1− v)V10 + uvV11 + (1− u)vV01 (2.6)

Equation 2.6 is a bilinear mapping of the unit square into a quadrilateral.
It is computed by using linear interpolation along the top and bottom edges
of the quad and then applying a linear interpolation between these two in-
terpolated points.

T (α, β) = V00 + α(V10 −V00) + β(V01 −V00) (2.7)

Each point on in one of the triangles is described by Equation 2.7 and
when Equation 2.8 is satisfied, the point is inside the triangle. If the ray
intersects the quadrilateral, Equation 2.1 is inserted into Equation 2.8 to
find t.

α ≥0 (2.8a)

β ≥0 (2.8b)

α + β ≤ 1 (2.8c)

(2.8d)

2.2.3 Triangle

Triangle collisions uses the same method as the quadrilateral for finding
if a ray intersects with the triangle, using Equation 2.7 to determine if it
intersects with the ray and computing t by inserting Equation 2.1 into that
equation.

2.2.4 Octree

Collisions against the octree uses a iterative solution to traverse a ray trough
the tree. When a ray is created, it is compared against all the top boxes. As
the ray is evaluated, the bounding box closest to the ray are found, iterating
down. If no collisions is found, the algorithm iterates up again, finding the
smallest neighboring bounding box that has data in it. This process is visu-
alized in Figure 2.1. The ray first collides with bounding box 1, but no child
nodes exist in it, so the ray traverse forward to the edge of bounding box 2
as it collides with the sibling to 1. It now iterates down to bounding box
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Figure 2.1: Visualization of the collision tests a ray traveling trough an octree
data structure.

2 in the figure and finds that no child’s are in this bounding box. The ray
moves forward to bounding box 3 and finds a primitive in this bounding box,
collision tests are done against it but no collision is found. The ray traverse
forward to the edge of bounding box 3 and trough bounding box 4. The ray
exits out of bounding box 5 and no collisions were found and therefore, no
collisions between the scene and the ray were found.

This allows for using the fast and cheap AABB intersection method in-
stead of expensive collision tests using all primitives.

2.3 Anti-aliasing by sub-pixel sampling

To reduce aliasing effects in the final image we have implemented support
for sub-pixel sampling. This means that instead of sending one ray from
the virtual camera through the center of a pixel on the view plane, we send
several rays distributed on the pixel and average their results. The view ray
distribution on the pixel area is done in a uniform fashion, placed evenly
spaced on the pixel. For all rendered images in this report this anti-aliasing
method was used. In Figure 2.2 we see a comparison between using 1 ray per
pixel on the left which is equivalent to no sub-pixel sampling, and 10 rays
per pixel on the right.
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(a) 1 ray per pixel (b) 10 rays per pixel

Figure 2.2: Antialising by sub-pixel sampling

2.4 Russian Roulette

Russian roulette is a method for ray termination that specifies a probabil-
ity for continuing or terminating at each bounce. How the probability is
decided depends on how complex the implementation. A simple implemen-
tation only states a fixed threshold of probability for each ray. As the ray
continues forward, the probability of terminating increases. More complex
implementations could use reflectance of the surface to decide, giving a higher
probability of termination for diffuse primitives. Light intensity could also be
taken into consideration when determining the probability, giving a higher
chance of termination for low intensity values.

2.5 Monte Carlo ray tracing

As described in the introduction a Monte Carlo ray tracer is similar to a
Whitted ray tracer in that it is only interested in the radiance reaching the
virtual camera, or the eye. It is a complete global illumination algorithm, and
solves the rendering equation Equation 1.2, repeated below for convenience,
by random sampling.

L(x→ θ) = Le(x→ θ) +

∫
Ωx

fr(x,Φ→ θ)L(x← Φ)cos(Nx,Φ)dωΦ (1.2)

The left hand side L(x → θ) corresponds to the radiance leaving at a
point x in the direction θ. The right hand side consists of an emittance part
and a reflectance part. Le(x→ θ) corresponds to outgoing radiance emitted
from x, and the integral term corresponds to reflected radiance received from
all directions over a hemisphere over the point x. In [1] it is shown that
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Equation 1.2 can be represented by separating the terms for indirect and
direct illumination as in Equation 2.9.

L(x→ θ) = Ldirect + Lindirect (2.9a)

Ldirect(x→ θ) =

∫
A

Le(y → yx)fr(x,xy→ θ)G(x, y)V (x, y)dAy (2.9b)

Lindirect(x→ θ) =

∫
Ωx

Lr(x← Φ)fr(x,Φ→ θ)cos(Nx,Φ)dωΦ (2.9c)

2.5.1 Direct illumination

The term Ldirect(x → θ) expresses the contribution to a point x from light
sources directly. Since the term Ldirect(x → θ) contains the emittance term
Le it is only non-zero for light sources, we can describe the direct illumination
contribution as in Equation 2.9b, which is an integral over the area of the
light sources in the scene instead of an integral over the hemisphere. Or
as a discrete representation as a sum over all N light sources in the scene.
In our implementation only a single planar light source is considered. For
generality’s sake all equations presented will be defined to handle an arbitrary
number of light sources.

Ldirect(x→ θ) =
N∑
k=1

∫
Ak

Le(y → yx)fr(x,xy↔ θ)G(x, y)V (x, y)dAy

(2.10)
In Equation 2.9b, A refers to the area of a light source in the scene. For

every intersection point retrieved from the scene, that point’s direct illumi-
nation is calculated in two separate ways, one for direct diffuse illumination
and one for direct specular illumination. For diffuse direct illumination the
light source is sampled. Each sample point yi is distributed uniformly on the
surface of the light source. The visibility function V (x, y) makes sure that
only sample points visible from x will contribute to the direct illumination
by checking if yi is in line of sight of x. Because of this these rays are often
called shadow rays, and will result in soft shadows if enough samples yi are
taken. For a single planar area light source sampled with Ns shadow rays
the Monte Carlo estimator becomes

〈Ldirect(x→ θ)〉 =
1

Ns

Ns∑
i=1

Le(yi → yix)fr(x, θ ↔ xyi)G(x, yi)V (x, yi)

p(yi)

(2.11)
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as described in [1].
A uniform probability distribution function p(yi) of 1

A
is used where A is

the area of the light source. From Equation 2.11 we see that it is required to
evaluate visibility, BRDF and radiance emitted for each sample point.

Direct specular illumination is handled more straight forward. If a ray
intersects with a specular object, a new ray is traced from the intersection
point in the direction of a perfect reflection of the first incoming ray. If this
new ray intersects a light source the point at the initial intersection receives
radiance contribution in the form of emittance from that light source.

2.5.2 Indirect illumintaion

Indirect illumination corresponds to radiance received through one or more
reflections against other objects in the scene. The contribution from indirect
illumination for a point x is done by evaluating the integral over the hemi-
sphere in Equation 2.9c. Unfortunately we cannot transform this expression
into an integral over a smaller domain as we did for direct illumination since
the reflectance term Lr, which in turn contains radiance from other points
in the scene, appears on both sides of the equation. The recursive nature of
this algorithm is evident and it is clear that an exact solution is cannot be
found. We instead use a Monte Carlo estimator as presented in [1].

〈Lindirect(x→ θ)〉 =
1

N

N∑
i=1

Lr(r(x,Φi)→ −Φi)fr(x, θ ↔ Φi)cos(Φi, Nx)

p(Φi)

(2.12)
In Equation 2.12 N is the number of rays used to sample indirect radiance,

Lr is the reflected radiance, Φi is the hemisphere direction of the i :th sampled
ray, fr is the BRDF of the surface material of x, Nx is the surface normal,
and finally p(Φi) is the probability distribution function. Specular indirect
illumination och diffuse indirect illumination are handled separately.

Diffuse indirect illumination

In this project all diffuse surfaces are of Lambertian type. Since a Lamber-
tian diffuse surface per definition reflect equal amounts of radiance in every
direction, the BRDF and the pdf for such a surface can both be treated as
constants. We define the BRDF and the pdf for all diffuse surfaces as in
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Equation 2.13.

BRDF =
color

π
(2.13a)

p(Φi) =
cos(Φi, Nx)

π
(2.13b)

Inserting Equation 2.13 into Equation 2.12 and reducing and realising
that constants can be placed outside the sum produces Equation 2.14.

1

N

N∑
i=1

Lr(r(x,Φi)→ −Φi)fr(x, θ ↔ Φi)cos(Φi, Nx)

p(Φi)
→

1

N

N∑
i=1

Lr(r(x,Φi)→ −Φi)
color

π
cos(Φi, Nx)

cos(Φi,Nx)
π

→

color

N

N∑
i=1

Lr(r(x,Φi)→ −Φi) (2.14a)

The random hemisphere sample direction Φi is created by randomly pick-
ing two angles θ and φ, which will represent a sampling direction in spherical
coordinates. The angle φ is assigned a uniform random value in the interval

[0, 2π] and θ is assigned a value of cos−1(r
1

1+n ) where r is a uniform random
number in the interval [0, 1] and n is a number in the interval [0, 1] which
dictates the sample direction’s alignment within the cosine lobe around Nx.
Lastly, the sample direction is transformed to Cartesian coordinates and is
rotated along Nx.

Specular indirect illumination

Perfect specular surfaces are implemented in this project.
The BRDF for a specular surface is different from 0 in only a single

direction, the perfect reflection direction. The BRDF and pdf are defined
in equation Equation 2.15 where θ is the incident ray’s angle to the surface
normal and Φi is the reflected ray angle. Since we are dealing with perfectly
specular materials the pdf will be equal to 1 as well, and Φi = θ thus the
dirac function will yield a result of 1.

BRDF =
color

cos(Φi, Nx)
δ(Φi − θ) =

color

cos(Φi, Nx)
(2.15a)

pdf = 1 (2.15b)
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Inserting Equation 2.15 into Equation 2.12 yields

1

N

N∑
i=1

Lr(r(x,Φi)→ −Φi)fr(x, θ ↔ Φi)cos(Φi, Nx)

p(Φi)
→

1

N

N∑
i=1

Lr(r(x,Φi)→ −Φi)
color

cos(Φi, Nx)
cos(Φi, Nx)

1
→

color

N

N∑
i=1

Lr(r(x,Φi)→ −Φi) (2.16a)

which, if Φi does not intersect a light source, is a recursive call that lets the
reflected ray continue through the scene.

An intersection with a specular surface can have two results. For a spec-
ular material that is perfectly opaque, for example a mirror-like material,
a reflected ray will be created. If the reflected ray in turn does not inter-
sect with a light source it will be recursively iterated and continue through
the scene. If the material instead is not perfectly opaque two rays will be
created. One reflected ray created in the same fashion as described above,
and one refracted (transmitted) ray that will continue into the object. To
decide how much of the radiance should be contributed from the reflected
ray an approximation of Fresnel’s equation as presented by Schlick et al. [6]
in Equation 2.17 is used.

R0 =

(
n1 − n2

n1 + n2

)2

→ (2.17a)

R(θ) = R0 + (1−R0)(1− cos(θ))5 (2.17b)

R0 is the reflection coefficient for light incoming parallel to the normal
direction of the surface, n1 and n2 are the refractive indices for the mediums
the ray is come from and going into respectively. The term cos(θ) is the
dot product between the halfway direction vector and the viewing direction
vector. Equation 2.17 describes what fraction of the reflected ray should
be used in computing the radiance for the intersection point. The radiance
contribution from the refracted (transmitted) ray them becomes T = 1−R.

R0 is the reflection coefficient for light incoming parallel to the normal
direction of the surface, n1 and n2 are the refractive indices for the mediums
the ray is coming from and going into respectively. The term cos(θ) is the
dot product between the halfway direction vector and the viewing direction
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vector. Equation 2.17 describes what fraction of the reflected ray radiance
should be used in computing the radiance for the intersection point. The
radiance contribution from the refracted (transmitted) ray them becomes
T = 1−R.

2.5.3 Reflection

When a ray travels through a medium, colliding with another medium, the
ray will be reflected. The law of reflection says that the angle of incidence θi
and the angle of reflection θr is equal to each other for a perfect reflection.
The incoming ray can be divided into two different parts, the tangent part to
the surface i⊥ and the normal part i‖. The tangential part can be found using
orthogonal projection onto the normal using Equation 2.18. The normal part
is found using Equation 2.19.

i⊥ =
i · n
|n2

n = (v · n)n (2.18)

i‖ = i− i⊥ (2.19)

By doing a dot product between these two rays, it is possible to prove that the
result is zero and thus proving that these two are orthogonal and that i⊥ is an
orthogonal projection on n. By combining Equation 2.19 and Equation 2.18
the reflected ray r can be calculated using Equation 2.20.

r =i‖ − i⊥ (2.20a)

=[i− (i · n)n]− (i · n)n (2.20b)

=i− 2(i · n)n (2.20c)

2.5.4 Refraction

When calculating refractions, Snell’s law are used. It states that the product
of the refractive indices and sines of the angles must be equal, as stated in
Equation 2.21.

η1sinθi = η2sinθt (2.21)

This equation has a problem, when sinθ1 >
η1

η2

the other term sinθ2 has

to be greater then 1, which of course is impossible. This case is what is called
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total internal reflection. When calculating the refracted ray t, continued cal-
culation assumes that the condition is not satisfied.

The refracted vector is also divided into two parts, just the same as
in Equation 2.19 and the norms are calculated first. By taking advantage
of the fact that norms and tangents to the plane is equal to the sines in
Equation 2.21 it can be rewritten into Equation 2.22.

t‖ =
η1

η2

i‖ =
η1

η2

[i + cosθin] (2.22)

The tangential calculation uses Pythagoras which gives Equation 2.23.
The combination of these two, described in Equation 2.24 is all that is needed
to calculate the refraction vector

t⊥ = −
√

1− |t‖|2n (2.23)

t =
η1

η2

i + (
η1

η2

cosθi −
√

1− |t‖|2)n (2.24)

2.6 Multi-threading

Multi-threading was implemented using C++11 threads. The application
spawns a number of threads n equal to the number of CPU cores in the
computer, each is responsible for a part of the computation. The image is
divided so that each thread is responsible for every n:th column in the image
which counteracts work load issues where parts of an image might be harder
to compute then others. To support rendering while calculating, the threads
are joined after each row and a new image is rendered. This gives a small
overhead of spawning and joining threads but the benefit of seeing progress
in real time is high, and the overhead is only noticeable when dealing with a
small computation time per row which is not common when doing ray tracing
computations.
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3 — Results and benchmarks

3.1 Shadow rays

The quality of the direct diffuse illumination is directly related to the number
of shadow rays used to sample the light source from each intersection point.
Figure 3.1 shows images with different number of shadow rays per sample.
Notice how the amount of noise on the floor decreases as the number of
shadow rays increases. Table 3.1 shows the effect the number of shadow rays
has on the rendering time.

Shadow rays Time
1 6s
10 20s
20 34s
80 126s

Table 3.1: Rendering time for shadow rays.

3.2 Octree

The octree allows for a great speedup when using a scene with a lot of
primitives. As can be seen in Table 3.2, even with a mesh with relatively
low polygon count the computation time is decreased by a factor of 10. The
same table also shows the problem with the octree structure. It does require
a lot of extra collision tests and when the scene is simple, time is lost instead
of gained.

Bunny Octree Time
yes yes 37.8s
yes no 6m 16s
no no 6.6s
no yes 16.9s

Table 3.2: Rendering time with and without octree data structure in scene.
Rendered with 10 rays per pixel. Bunny consists of 4968 triangles.
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(a) 1 shadow ray (b) 10 shadow rays

(c) 20 shadow rays (d) 80 shadow rays

Figure 3.1: Number of shadow rays increasing from left to right, top to
bottom.
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3.3 Threads

The number of threads used in the solution is dependent on how many cores
the CPU of the rendering computer has. By allowing several threads to divide
the work, the algorithm is allowed to compute several parts of the image in
parallel. As can be seen in Table 3.3 a speedup of almost 70 percent is gained
when using four threads, compared to using only one.

Threads Time % decrease
1 116s 0
2 56.5s 51
3 50.4s 57
4 37.1s 68

Table 3.3: Rendering time using different number of threads also showing
percentage decrease when adding more threads. Rendered with 10 rays per
pixel, with only walls and bunny.

3.4 Recursion depth

Recursion depth refers to the number of recursive calls allowed in the algo-
rithm, e.g. how many bounces a ray will make in the scene before terminating
and returning. The recursion depth affects the noise in the final image, but
it also has an impact on the resulting reflections and refractions for specular
objects. As seen in Figure 3.2 a recursion depth of 0 results in only direct
illumination present. Notice how all specular objects are void of any indirect
illumination since only once bounce per ray is allowed. A recursion depth
of 1 yields slightly better results. We now see objects that are opaque and
specular since rays are allowed to bounce once before termination. Notice
that the glass sphere is still void of indirect illumination since a refraction
occurrence involves at least 2 recursive iterations. A depth of 2 recursions
allows for a single refraction instance and the glass sphere is now better rep-
resented. Lastly a render depth of 6 is shown in Figure 3.2d. This is the
recursion depth used for most of the images in this report. Table 3.4 show
the effect recursion depth has on rendering time.

21



(a) 0 recursions (b) 1 recursion

(c) 2 recursions (d) 6 recursions

Figure 3.2: Increasing recursion depth from left to right, top to bottom.
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Recursion depth Time
0 11s
1 17s
2 24s
6 55s

Table 3.4: Rendering time for different recursion depths.

3.5 Noise introduced by specular materials

Specular materials that produce reflected and to some extent refracted rays
is and additional source for noise in the final image and require more samples
to reach the same quality level as a scene with only diffuse samples.

Notice the increased noise on the surface of the back wall and on the box
nearest to the camera in Figure 3.3.

3.6 Samples per pixel

Another way of reducing the noise in the images is by sending several rays
through the same pixel from the camera. Instead of sending a single ray
through the center of the pixel we send multiple rays placed in the pixel
in a uniform random fashion. The contributions from each view ray are
summed up and normalized to form the final intensity value for the pixel.
This technique is sometimes referred to as sub-pixel sampling. In Figure 3.4
we see a scene rendered with an increasing amount of view rays per pixel
from left to right, top to bottom. Notice how the noise seen on the back wall
in Figure 3.4a subsides rather quickly, while the noise in areas not directly
visible to the light source persists much longer even though the number of
samples increase.
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(a) Diffuse materials only

(b) Specular and diffuse materials

Figure 3.3: Scene rendered with the same resolution, recursion depth, shadow
rays, and a low number of samples per pixel to illustrate the increased noise
when specular objects are used in a scene.
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(a) 50 view rays per pixel (b) 100 view rays per pixel

(c) 600 view rays per pixel (d) 1000 view rays per pixel

Figure 3.4: Reducing noise by increasing the number of view rays.
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Figure 3.5: Final render of Monte Carlo ray tracer.
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4 — Discussion

The beginning of the project consisted of lots of reading and researching dif-
ferent methods used in a ray tracer. Initially a simple ray caster and later
a Whitted ray tracer were implemented to allow us to familiarize ourselves
with scene set-up, equations for path tracing, reflections, ray versus primitive
intersections and so on. Moving on to a Monte Carlo ray tracer introduced
a number of new variables to take into consideration, as well as other chal-
lenges compared to a Whitted ray tracer. We implemented multi-threading
early on in the project and we are happy with doing so. Ray tracing suits
parallel computing very well since every pixel is solved completely indepen-
dant on the calculations for other pixels, and we achieved an almost linear
speedup when running the rendering on a multicore CPU. One additional
improvement that could be done would be to implement a cluster where sev-
eral computers can work on different parts of the same image.

By implementing a ray tracer based on the Monte Carlo method it is
possible to create high quality renders of the scene, given that the solution
is allowed to converge enough. But even with a lot of iterations and sam-
ples the final output result still suffers from artifacts like noise. To remedy
this, photon mapping could be implemented which would decrease the time
it takes for the solution to converge.

The created ray tracer only handles air to glass and glass to air refrac-
tions, not between any two mediums. Implementing this would allow us to
create glass objects that are placed on other surfaces and not only floating
in the air. To extend our solution to support this would not be too hard,
because we would still be dealing with the same two cases, ray travelling to a
medium with lower refractive index or ray travelling into a medium of higher
refractive index.

The implementation of the Octree data structure allowed for a large de-
crease in computation time for scenes with a high number of primitives. For
life-like scenes that consists of an even higher polygon count, a technique like
this is crucial. We have also shown that this structure implies an overhead
for scenes that are very simple. A method for deciding if an Octree would
be beneficial could be implemented where the decision of collision method is
decided depending on the complexity of the scene. But because the speed
gained from complex scenes is far greater than the time lost when dealing
with complex scenes, this is still acceptable for us.

When computing direct diffuse illumination, smarter methods for sam-
pling the light source could be employed. Using a pdf of 1/A e.g uniform
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sampling of the light source area as in this report is not ideal. This approach
means for example that points far away from the light source uses the same
amount of shadow rays as points close to the light source. Importance sam-
pling could instead be used to use more shadow rays for points close the light
source, as vice verse for points far away.
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