
L A B R E P O R T : L A B 1
TNM079, MODELING AND ANIMATION

Johan Beck-Norén
johbe559@student.liu.se

Thursday 2nd May, 2013

Abstract

This is the first lab in a series of six labs in the course TNM079 Modeling and Animation
given at Linköping University. For this lab a half-edge mesh structure was implemented.
A few basic mesh calculations and operations were implemented and performed using the
half-edge mesh structure such as mesh curvature, vertex normals, mesh area and mesh volume
in order to examine any gain in using it as a mesh structure. The results show that although
the half-edge mesh structure uses more memory than a simple mesh and is a bit complex to
implement, it is considerably more efficient in performing mesh operations that require access
to vertex neighbourhoods.

1 Introduction

1.1 Triangle mesh structure

There are many different structures for storing mesh data and for defining a mesh. The most
commonly used mesh format is based on triangles. A triangle is defined by three vertices, which
together with a normal direction defines a plane shared by the triangle polygon. The information
about the vertices’ coordinates are usually stored in a container of some sort, often referred to
as a vertex list. The information about which combination of vertices that are used to define a
triangle is also stored in a container, often referred to as a triangle list. These lists are used to
define the mesh’s geometry and topology as a form of boundary representation. A structure
like this means that if we, for a vertex, want to find it’s neighbouring vertices or which faces the
vertex belongs to we have to iterate through the vertex list or triangle list, which is an operation
that takes linear time, O(n). However, if we wish to perform this neighbourhood search for every
vertex in a mesh structure it becomes a problem of time complexity O(n2).

This is one of the main reasons why we are looking at alternative mesh structures, such as
the half-edge mesh structure that sacrifices memory usage in favour of neighbourhood access
and search performance.

1.2 Half-edge mesh structure

As described above, a triangle mesh structure uses a vertex list and a triangle list to define the
mesh’s topology and geometry. For a half-edge mesh structure we store the same information
as we do in a triangle mesh structure, with the addition of edge information. This is to enable
the use of a more efficient method of neighbourhood access. Consider ”splitting” an edge down
its length, creating a half edge (figure 1). Each half-edge only explicitly store information about

1

left
pair

next

prev

vert

Figure 1: Half edge mesh structure. Explicit information in bold blue lines, implicit information
via pair access in dotted blue lines.

the left face. This information include pointers prev and next used to traverse the half edges
surrounding the left face in a counter-clockwise fashion, pointer to a vertex used to access the
half edge and lastly a pointer the half edge’s pair which is used to access the right face. We can
now, given a vertex, quickly access the neighbouring topology through the half edge structure
described above.

For this lab we constrain ourselves by assuming the meshes used are of the closed manifold
triangle type. All methods mentioned in this report can be found in the file HalfEdgeMesh.cpp.

2 Assignments

This section describes a few geometric properties of meshes for which the operations and
calculations might benefit from using a half-edge mesh structure. As described in the introduction
of this report, structures using only lists triangle- and vertex-lists for storing mesh topology
information perform poorly when accessing neighbourhood information. A situation where we
could benefit from fast neighbourhood access is for example when calculate per-vertex normals.

2.1 Implementing the half-edge mesh

In order to create a half-edge mesh structure for a closed manifold triangle mesh we have to
associate vertex-, face- and half-edge pointers to each other correctly. The implementation
was written in the methods AddFace, using the already implemented methods AddVertex
and AddHalfEdgePair in the file HalfEdgeMesh.cpp given in the lab. The following steps are
performed for each triple vertices defining a triangle;

1 Add the three vertices to the vertex list using the method AddVertex.

2 Use the three vertices to define the three edges defining the triangle. Generate and connect
a half-edge pair for each edge using the method AddHalfEdgePair. This method also
associates each generated half-edge with its origin vertex, as well as connecting each vertex
to one of its edges.

2

3 For each generated half-edge belonging to the left face, point it’s prev and next pointers to
the correct corresponding half-edges in a counter-clockwise orientation.

4 Create a face. Calculate its face normal and connect the face with a half-edge belonging to
the left face. Connect the face with the three half-edges from the previous step.

As we stated earlier, we are assuming the mesh used is a closed manifold mesh. This means
that each edge is connected to exactly two faces. We can therefore ignore the right face in the
steps above, since that face will be caught as a left face in the algorithm eventually.

2.2 Implementing neighbour access

As mentioned earlier, more efficient neighbourhood access is one of the main reasons for imple-
menting a half-edge mesh structure. Two types of neighbourhood access has been implemented;
one method for finding a vertex’s neighbouring vertices and another method for find a ver-
tex’s neighbouring faces. These were implemented in the methods FindNeighborVertices and
FindNeighborFaces respectively.

2.2.1 Finding neighbour vertices

Given a vertex pointer we want to find all the neighbour vertices to that vertex. We accomplish
this by traversing around the given vertex using the half-edge structure.

Algorithm 1 Find neighbour vertices of vertex vertexIn

1: edgeCurrent← vertexIn.edge.next
2: edgeEnd← edgeCurrent
3: repeat
4: f oundVertices.append(edgeCurrent.vertex)
5: edgeCurrent← edgeCurrent.next
6: edgeCurrent← edgeCurrent.pair
7: edgeCurrent← edgeCurrent.next
8: until edgeCurrent = edgeEnd

2.2.2 Finding neighbour faces

To find a vertex’s neighbour faces we take a similar approach as when finding neighbouring
vertices.

Algorithm 2 Find neighbour faces of vertex vertexIn

1: edgeCurrent← vertexIn.edge
2: edgeEnd← edgeCurrent
3: repeat
4: f oundVertices.append(edgeCurrent. f ace)
5: edgeCurrent← edgeCurrent.prev
6: edgeCurrent← edgeCurrent.pair
7: until edgeCurrent = edgeEnd

3

2.3 Calculating vertex normals

In order to calculate a vertex normal, we need access to all the faces the vertex belongs to. In
the previous section, we talked about fast access to the neighbourhood around a vertex, and
this really comes into play now. Although there are many ways to average face normals, we
use a simple technique called mean weighted equally (MWE). This technique comprises of
summing up all surrounding face normals from faces containing the vertex, and then normalize
the resulting vector (equation 1). N1(i) is sometimes referred to as the 1-ring neighbourhood of the
i:th vertex. In this case it corresponds to all the faces containing vertex vi, see figure 2.

~nvi =
ˆn

∑
j∈N1(i)

~n f j
(1)

Using our now implemented method FindNeighborFaces we can quickly gather the data we
need for this operation. The resulting normal vector is stored in the Vertex struct. Vertex normal
calculations are implemented in the method VertexNormal.

2.4 Calculating surface area of a mesh

Let us recap a little. In most cases, a polygon mesh is an approximation of a shape. A polygon
mesh can for example resemble the shape of a sphere, but no matter how high the polygon count
is it will still never become a completely round sphere since it still consist of individual polygons.
Keeping this in mind, we realize that to calculate the surface area of a mesh we simply need to
sum the surface area of each individual face on the mesh. This also follows that an integral can
be approximated discreetly by a Riemann sum of the surface areas of each individual face. In
equation 2, A(fi) is the surfaces area of the i:th face. The area of a triangle face is calculated by
taking half the magnitude of the cross product between any two edges of the triangle.

AS =
∫
S

dA ' ∑
i∈S

A(fi) (2)

This is implemented using the quick neighbourhood access of the half-edge mesh structure.

Algorithm 3 Surface area of mesh

1: areaSum← 0
2: for all faces in mesh do
3: edge← f acei.edge
4: v1← edge.vertex1
5: v2← edge.next.vertex2
6: v3← edge.prev.vertex3
7: areaSum +

= 1
2 LengthO f Vector(CrossProduct(v2− v1, v3− v2))

8: end for

The area calculations are implemented in the method Area.

4

2.5 Calculating volume of a mesh

To calculate the volume of a mesh, we use an approach similar to when we calculated the surface
area of a mesh. The volume integral normally used can in this case be replace with a Riemann
sum over each face by using Gauss’ theorem (equation 3). Gauss’ theorem relates the volume and
surface area integrals by stating that the surface integral of a vector field times the unit normal
gives the volume integral of the divergence of the same vector field.

∫
S

~F ·~ndA =
∫
V

∇ · ~Fdτ (3)

Because this holds true for any vector field, we choose a vector field ~F with constant diver-
gence, e.g. ∇ · ~F = c where c is some constant. Insertion into the right hand side of equation 3
gives us

∫
V

∇ · ~Fdτ =
∫
V

cdτ = c
∫
V

dτ = cV. (4)

After choosing a suitable vector field ~F and then approximating the volume integral as a
Riemann sum we end up with

3V = ∑
i∈S

(~v1 +~v2 +~v3) fi

3
·~n(fi)A(fi). (5)

The fraction refers to the centroid of the i:th face, and A(fi) is the surface area of the i:th face.

2.6 Implementation and visualization of Gaussian curvature

The curvature of a mesh basically describes how smooth the mesh is. More precisely it describes
how much the normal for a point on the mesh changes as we move the point along the surface of
the mesh. The Gaussian curvature K is multiplicatively dependent on the two principle curvatures
κ1 and κ2.

K = κ1κ2 (6)

The principal curvatures are defined as the maximal and minimal curvatures passing through
any given point on the mesh surface. K is calculated by equation 7 where A is the area of the
1-ring neighbourhood seen in figure 2.

K =
1
A
(2π − ∑

j∈N1(i)
θj) (7)

The code for Gaussian curvature was already implemented in the files provided and works
well with the half-edge mesh structure, since the implementation uses the method FindNeigh-
borVertices.

5

βj

vj

αj

θj

vi

Figure 2: 1-ring neighbourhood for vertex vi used in discreet curvature calculations.

2.7 Implementation and visualization of mean curvature

Mean curvature, unlike Gaussian curvature, depends additively on κ1 and κ2. The mean curva-
ture H is defined as

H =
1
2
(κ1 + κ2). (8)

H can be found by looking at the gradient of the area seen in figure 2. The discrete version of
this equation is outlined in equation 9, where α and β are seen in figure 2.

H~n =
1

4A ∑
j∈N1(i)

(cotαj + cotβ j)(~vi −~vj) (9)

The approximations in equation 7 and equation 9 can be improved by choosing the voronoi
area of the 1-ring neighbourhood. The voronoi area is given by equation 10. Replacing A with the
voronoi area Av in equations 7 and 9 greatly improves the curvature results. The implementation
can be found in the method VertexCurvature.

Av =
1
8 ∑

j∈N1(i)
(cot αj + cot β j)|(~vi −~vj)|2 (10)

2.8 Classifying the genus of a mesh

The genus of a mesh is loosely defined as the number of holes a mesh has. A solid cube would
for example have a genus of 0, while a torus would have a genus of 1 and so on. To calculate the
genus of a mesh we use the Euler-Poincaré formula described in equation 11. V, E and F represent
the number of vertices, whole (non-half) edges and faces while L, S and G represent the number
of loops, shells and the genus of the mesh.

6

V − E + F− (L− F)− 2(S− G) = 0 (11)

Realizing that we are only dealing with triangle meshes in this lab, the number of loops will
be the same as the number of faces. Setting L = F and rearranging equation 11 gives us

G =
−V + E− F + 2S

2
(12)

which will result in the correct genus classification. The implementation was done in the
method Genus.

2.9 Computing the number of shells

In equation 11 used in the section above, S is defaulted a value of 1. Shells can be described as
parts of a mesh with no topological connections to each other.

We compute the number of shells by using a flood-fill algorithm. Starting at any given vertex
we traverse the vertices of the mesh using the half-edge structure, ”tagging” vertices as visited
as we go. For each visited vertex, we collect the 1-ring neighbourhood of that vertex. If any
1-ring neighbour vertex has not been ”tagged” it is put in a queue to be visited. When we have
visited every vertex possible by half-edge traversal, e.g. the queue is empty, we compare our list
of ”tagged” vertices to the mesh vertex list. If they are not of equal size it means the mesh consist
of two or more shells. In that case we pick an arbitrary ”untagged” vertex from the vertex list
and repeat the process until the size of the ”tagged” list equals the number of total vertices for
the mesh.

Algorithm 4 Compute number of shells by flood fill algorithm

1: shells← 0
2: currentVert← 0
3: vertQueue.push(currentVertex)
4: while tagged.size < numberO f Verts do
5: while vertQueue 6= empty do
6: currentVert← vertQueue.pop
7: if currentVert not in tagged then
8: tagged.add(currentVert)
9: for all vi in 1-ring of currentVert do

10: if vi not in tagged then
11: vertQueue.push(vi)
12: end if
13: end for
14: end if
15: end while
16: if tagged.size < numberO f Verts then
17: currentVert← unvisited vertex
18: end if
19: shells +

= 1
20: end while

7

3 Results

3.1 Vertex normals

In the program given in the lab, vertex normals are visualized as green lines and face normals as
red lines as seen in figure 3.

Figure 3: Face normals in red and vertex normals in green.

3.2 Surface area of mesh

By looking at spheres with radii of 0.1, 0.5 and 1 we can calculate the analytically correct areas of
these spheres and compare it to the results from our mesh representations of the same spheres.
See table 1 for result comparisons.

Sphere radius True area Calculated area
0.1 0.12566 0.12511
0.5 3.14159 3.12775
1.0 12.5664 12.5110

Table 1: Comparison between true and calculated area values for spheres of different radii.

3.3 Volume of mesh

We again use the spheres as an example for mesh volume calculation. See table 2 for results.

8

Sphere radius True volume Calculated volume
0.1 0.0041888 0.0041519
0.5 0.523360 0.518988
1.0 4.18879 4.15190

Table 2: Comparison between true and calculated volume values for spheres of different radii.

3.4 Curvature calculations

As discussed in [1] the curvature of a sphere is inversely proportional to the radius of that sphere,
1
R where R is the radius of the sphere. This implies that a sphere with a radius of 1 will have a
curvature of 1. Using the voronoi area approximation discussed in section 2.7 results in principle
curvature values in the interval [0.997816, 1.00227] for [κ1, κ2].

3.5 Genus classification

Using cube.obj yields a result of genus = 0 while using genuscube.obj yields a result of genus = 5.

3.6 Number of shells

Using cube.obj returns shells = 1. Using genusTest.obj returns shells = 4 and genus = 3.

4 Conclusion

As discussed in [1] a simple mesh structure with only a vertex list and triangle list has a memory
usage of 18F bytes for a mesh with F faces. [1] goes on and states that a mesh with a half-edge
structure has a memory usage of 72F bytes for a mesh with F number of faces. This translates to
an increase in memory storage by a factor of 4, which can be considered pretty steep. In return we
get a mesh structure with fast random access to vertex neighbourhoods which can be beneficial
for some applications. The simple mesh is very fast for linear traversal of triangles e.g. for
rendering applications, but performs rather poorly when access to neighbourhood information
is needed. As stated in section 1.1, accessing neighbourhood information is an operation of
quadric complexity for a simple mesh structure. The complexity for the algorithm used in the
half-edge structure to access neighbourhood information, since we assume closed manifold
triangle meshes, becomes almost trivial in comparison.

When the voronoi area approximation was implemented for the curvature approximations
in sections 2.6 and 2.7 the results were greatly improved. It might therefore be worth the extra
effort it takes to implement.

The reason for the volume values in section 2.5 being slightly smaller that the real volume
is because the meshes we use are only approximations with a finite number of vertices. Each
vertex may lie on the surface of the real sphere, but when these vertices are connected to form
triangles these triangle faces does not lie on the surface of the sphere. If we let the number of
vertices increase the volume integral approximation by the Riemann sum would become more
accurate and thus provide a more accurate result.

In conclusion; even though the half-edge mesh structure is a little trickier to implement it
is very well suited for modeling applications. Considering memory is comparatively cheap it
could be worth the effort to implement and use this structure for high performance modeling
applications.

9

5 Lab partner and grade

The lab was completed in collaboration with Hans-Christian Helltegen, hanhe945. Since I have
completed all assignments with (*) and (**) as well as one assignment with (***) I should qualify
for grade 5.

References

[1] Gunnar Läthén, Ola Nilsson, Andreas Söderström, Stefan Lindholm Mesh Data Structures.
TNM079 Modeling and Animation, Linköping University, 2013.

10

