
TN1008

Project Report

Viktor Nilsson, vikni067@student.liu.se
Axel Kinner, axeki412@student.liu.se

Johannes Deligiannis, johde901@student.liu.se
Johan Beck-Norén, johbe559@student.liu.se

Andreas Valter, andva287@student.liu.se

August 12, 2013

Abstract

This is a project report for the course TN1008 - Advanced Simulation and Vi-
sualization of Fluids in Computer Graphics held at Linköping University, 2013.
In this report we present an implementation of a physically based simulation of
fire. The implementation is largely based on the paper Physically Based Mod-
eling and Animation of Fire by Nguyen et al. We simulate fire by using two
sets of incompressible flow equations representing the unignited fuel and the
hot gaseous products. These equations are coupled together using a ghost fluid
method and the interface seperating the fuilds are tracked using a level set im-
plicit surface. We also track the temperature across the simulation to simulate
external forces such as buoyancy, and to be able to render the simulation with
a visually accurate result. The simulation was rendered using ray casting which
was implemented in C++, as was the rest of the project.

Chapter 1

Introduction

1.1 What is fire?

By fully understanding the process behind fires one can easier simulate and
render the phenomena. Fires are usually created by a chemical reaction between
oxygen and fuel. As the amount of oxygen is reduced the flame becomes less
clean resulting in appearing smoke.

The chemical reaction is most commonly producing carbon dioxide, heat
and light. The actual flame that we can see is then the combined outcome
of all three products. Depending on the temperature of the flame; it appears
differently when observed by the human eye. This is due to the Black-body
radiation emitted from the fuel, gas and soot particles.

1.2 Different ways to simulate fire

The most physically correct state of the art approach today for simulating fire
is to track the burnt fuel and the unburnt fuel as two separate fluids. By
tracking the temperature of the two; the simulation ignites the unburnt fuel
when reaching a specific temperature and reduces the burnt fuel over the time.
To create a lasting flame one has to add unburnt fuel over the simulation time.
This assumes that the system is surrounded by an oxidizer (e.g air).

Other approaches includes creating the flames procedurally, without using
any fluid system. This is of course much easier and faster to implement. There
is also some fluid approaches that track one fluid; the flame surface (density)
instead of the temperature.

1.3 General fluid simulation background

Fluid simulation has been around before we even started to use computers. The
first mathematical approaches were presented around 1950. Incompressible and

1

free-surface fluids were first seen around 1995 [6]. Before this the fluids were
computed as non physically-based and in 2D.

Since the Navier-Stokes equations are still yet to be solved many different
approaches and methods for fluid simulation exists.

1.4 Previous implementations of fire

The most notable previous report, and the one this report follows closely is
Physically Based Modeling and Animation of Fire [8]. It approaches the problem
as described earlier with two seperated fluids and combines them with the help
of a ghost fluid in between them. There exists many new and improved methods
based on [8] such as Wrinkled Flames and Cellular Patterns [7], which introduces
the characteristic surface a flame often have.

Chapter 2

Background

2.1 Physically Based Model

Visually, one can define two distinct components of fire or flames; the inner
blue core and the hot gaseous products. In this report we follow the technique
used in [8] for tracking the border between the blue core and the hot gaseous
products with an implicit surface (level set). Points located inside of the surface
are defined as gaseous fuel which has yet to be ignited, and points outside of the
surface is defined as ignited hot gaseous products. The black-body radiation
emitted by the ignited fuel (hot gaseous products) are what we typically see as
the orange or yellow coloured component of fire. We also track the tempera-
ture in order to simulate external forces such as buoyancy, and to be able to
render the simulation with visual accuracy. The gaseous fuel is injected at its
ignition temperature, and as fuel crosses over our implicit surface (igniting) its
temperature cools until the black-body radiation is indistinguishable from the
surrounding air.

2

2.1.1 Blue Core

We separate the gaseous fuel from the ignited fuel by an implicit surface. This
implicit surface moves at a velocity of the unreacted fuel velocity plus a flame
speed S in the normal direction of the implicit surface. S dictates at what rate
the fuel is burning (moving over the implicit surface), and will produce different
kinds of flames for different values for S. A small value for S will result in a blue
core with greater surface area, and vice versa for a larger value for S.

2.1.2 Hot Gaseous Products

The blackbody radiation emitted from the hot gaseous products is the part of
the flame we often consider being yellow or orange. To be able to represent
these colours when rendering the simulation we track the temperature across
our grids. Another important aspect of the simulation is the expansion that
takes place as the fuel passes over our implicit surface and ignites. A simplified
explanation of what happens is an almost instantaneous expansion of the fuel
as it ignites, causing a change in the fuel trajectory as it does so. We model this
in the same fashion as in [8], by using a density ratio between the density for
the fuel and the hot gaseous product respectively. Since we assume that mass
and momentum are preserved, we use the following equations from [8] to couple
the flow equations across the implicit surface.

ρh(Vh −D) = ρf (Vf −D), (2.1)

ρh(Vh −D)2 + ph = ρf (Vf −D)2 + pf (2.2)

In these equations Vh and Vf are the velocities in the normal direction for the
hot gaseous products and the fuel respectively, D = Vf + S is the implicit
surface’s speed in the normal direction, and ph and pf are the pressures for
the hot gaseous products and the fuel. Note that this rapid expansion causes
discontinuities in both the density and the velocities in the area of the blue
core border (the implicit surface). We must therefore be careful when taking
derivatives in that region, which brings us to the next section.

2.1.3 Two-phase Flow and Ghost Fluid Method

We model the fuel and the hot gaseous products by two separate sets of incom-
pressible flow equations, namely Navier-Stokes equations. The problem with
discontinuities along the blue core surface described in the previous section can
be solved by extrapolating values for each section (fuel and hot gaseous prod-
ucts) by the Ghost Fluid Method [5]. If we for example are taking the derivative
for the unignited fuel in the vicinity of the blue core, we will extrapolate fuel
velocity values for cells adjacent to, but outside of, the blue core. These extrap-
olated values can then be used when taking derivatives and we do not have to
worry about the discontinuities described earlier. Vice versa for ignited fuel in
the vicinity of the blue core.

3

2.2 Level set method

To be able to track the interface between the blue core and the hot gaseous
products a Level set method is used. The Level set method represents the
interface by an implicit function φ defined as equation 2.3 in a 3D-space.

L =
{
~x ∈ <3 : φ(~x) = h

}
(2.3a)

Linside =
{
~x ∈ <3 : φ(~x) ≥ h

}
(2.3b)

Loutside =
{
~x ∈ <3 : φ(~x) < h

}
(2.3c)

This representation is useful for tracking and calculating topology properties
of a interface. The representation makes it easy to find out where in the fluid a
sample point is taken since it is only a matter of testing the sign. Since φ is a
implicit function, the normal can be calculated as in equation 2.4.

~n =
∇φ
|∇φ|

(2.4)

Moving an interface along a vector field ~V , the velocity field for instance, is
a matter of solving the hyperbolic PDE in equation 2.5.

∂φ

∂t
= −~V · ∇φ (2.5)

φ is also a signed distance function which means that the value of φ gives
the distance to the closest point ~p of the interface, eq. 2.6. The direction of
this point is also parallel with the surface normal, and since the length of the
gradient is 1 [4], this point ~p can be calculated for a given point ~x by equation
2.8.

distanceL(~x) = min
~p∈L
‖~x− ~p‖ (2.6a)

φ(~x) = distanceL(~x) : ~x is inside (2.6b)

φ(~x) = −distanceL(~x) : ~x is outside (2.6c)

~n = ∇φ (2.7)

~p = ~x− ~n · ∇φ(~x), ~p ∈ L (2.8)

4

2.3 Navier-Stokes Equation

The incompressible Navier-Stokes equations in equation 2.9 offer a way to de-
scribe the motion of fluids. This equation is the base of most simulations of
fluids eg. water, smoke, and fire. The equation consists of a set of partial dif-
ferential equations that describe how the fluid should behave through out the
simulation.

∂~u

∂t
+ ~u · ∇~u+

1

ρ
∇p = ~g + ν∇ · ∇~u,

∇ · ~u = 0

(2.9)

In this equation, ~u represents the velocity field of the fluid. ρ is the density
of the fluid. p stands for the pressure and is the force per unit area that the
fluid is affecting its surroundings with. The letter g represents external or body
forces that acts on the whole fluid. This term handles things like gravity and
buoyancy. The term ν∇·∇~u represents the fluild viscosity. This term describes
how much the fluid resists deforming while it is moving. Things like honey has
a high viscosity, while fluids like water has low viscosity. For fluids with low
viscosity, this term is usually not modeled because it has such small impact on
the simulation.

2.3.1 Self-Advection

In order to completely solve the Navier-Stokes equations, an equation on the
following from must first be worked out:

∂q

∂t
+∇q · ~u = 0 (2.10)

Where q = q(t, ~x) being some quantity, moving with the velocity field of the
fluid, ~u, at a certain time t and point ~x in space. L.h.s in eq. 2.10 is also what
defines the material derivative, denoted using capital D:

Dq

Dt
=
∂q

∂t
+∇q · ~u (2.11)

The material derivative describes the change of a quantity in a velocity field.
An equation using the material derivative is called an advection equation and
since the material being advected is the velocity field itself, q = ~u(t, ~x) eq. 2.12
is often referred to as Self Advection.

∂u

∂t
+∇u · ~u = 0 (2.12)

From the Eulerian perspective, which is mainly used in this report, we are
observing fixed points in space and tracing the change of velocity at these points,

5

while the Lagrangian point of view is focusing on a fixed set of particles and
tracing their trajectory (position). Equation 2.12 states that the velocity is only
changing at a location due to movement/replacement of quantity, or more easily
explained in Lagrangian terms, the particles are not changing their velocity
to any external force, just moving with the flow. The Lagrangian reasoning
is fundamental to a commonly used method to find a numerical solution to
equation 2.12 as described in more detail in section 3.2.1.

2.3.2 External forces

When fire is simulated as it would appear on earth, it is affected by the envi-
ronment that it is in. The characteristics of a lit candle is caused by gravity,
combined with boyancy that makes the flame rise and flicker. As the air around
the flame increases in temperature the hot air rises, causing an upward motion
to the flame. If a fire is lit in space with no gravity acting on it, it would take
the shape of a sphere.

2.3.3 Projection

The last step in solving the incompressible Navier-Stokes equation is the pressure
step, which is also sometimes called the projection step, by its linear algebraic
properties of a projection. This step enforces that the velocity field is diver-
gence free, and therefore incompressible, by calculating a pressure field p which
satisfies this property, eq. 2.9.

This can be done by using the Helmholtz-Hodge decomposition theorem
which states that a vector field ~v can be expressed as a sum of two vector fields,
one curl free ~vcf and one divergence free ~vdf , eq. 2.13a. If ~v is then set as ~vext
(the velocity field given by the external forces step) and ~vdf as the requested

velocity field ~vreq and then set ~vcf as ∆t∇p
ρ , it is possible to reorder eq. 2.13a

to eq. 2.13b which looks like a euler integration.

~v = ~vcf + ~vdf (2.13a)

~vext = ∆t
∇p
ρ

+ ~vreq ⇔ ~vreq = ~vext −∆t
∇p
ρ

(2.13b)

It is still two unkowns in eq. 2.13b which is one to many to be able to solve
this equation. But since ~vreq is divergence free it is possible to rule it out by
apply the divergence operator ∇ on both sides in eq. 2.13b. This results in a
possion equation 2.14, which is possible to solve.

∇ ~vext = ∆t
∆p

ρ
(2.14)

2.3.4 Boundary Conditions

When solving the Navier-Stokes equation, there are two different types of bound-
ary conditions that need to be enforced in order for the fluid to interact with

6

walls or other solid objects. These conditions can be seen as constraints that
rule out unwanted solutions for the PDE of the projection step. The first type
of boundary condition is the Dirichlet boundary condition. It simply states that
any velocity vector component that points into a grid cell marked as solid is set
to have a velocity of zero for that component.

V · n = 0 (2.15)

In equation 2.15 V is the velocity vector, and n is the boundary surface
normal. This boundary condition is enforced for the velocity field before and
after the projection step. This results in that no velocity vectors will point into
grid cells marked as solids.

The second boundary condition is the Neumann boundary condition, eq.
2.16, and it ensures that there is no change of flow between fluid cells and cells
marked as solid. The condition is enforced when building the linear equation
system during the projection step. The connection between a fluid cell and a
neighbouring solid cell is removed by entering a zero-value in the correct location
in the poisson matrix, thus ensuring that no exchange of fluid or change of flow
will occur between the cells.

∂V

∂n
= 0 (2.16)

7

2.4 MAC Grid

Figure 2.1: 2D MAC grid, p is pressure, u and v are velocity components. Half
indices are used for illustrative purposes, an implementation should use whole
indices.

In order to discretize the navier-stokes equations spatially, a technique called
MAC (Marker And Cell) is often used. Space is quantified in equally sized
cells, sampled quantities such as velocity components and pressure are spread
out at different locations in the grid, see fig. 2.4. The pressure is stored in
the center of each cell and the velocity is split componentwise and placed at cell
faces orthogonal to its direction. The placement of velocity vectors and pressure
might seem a bit odd but makes the central difference accurate for the pressure
gradient and velocity divergence [4], it’s easy to find out how much is flowing in
or out of a cell which is essential when doing the pressure update.

A less appealing consequence on the other hand is that a velocity vector can
not be accessed directly, it requires interpolation each time since the components
are separated. Additional properties might be stored in the grid depending
on the type of fluid being simulated, in the case of a fire simulation where
buoyancy is a distinguishing feature that can be mimicked by evaluating the
local temperature difference, temperature can be stored in the cell center. To
track the interface between the blue-core and hot gaseous medium the level-
set method is used. The ghost fluid method described in more detail in 3.1.1
requires a duplicate of each velocity component to account for discontinuous

8

density at the fuel interface.

2.5 Rendering

We are using a ray casting method for rendering our fire. The ray caster collects
temperatures over the scene and transform them into a color for each pixel using
black-body radiation.

2.5.1 Black-body radiation

To be able to convert a temperature sample in the grid to a color, we use the
black-body radiation model.

Figure 2.2: Five different temperatures and their respective spectral radiancy
depending on the wavelength. Notice the color spectrum that the human eye
can observe, from 400 to 700 nm.

The black-body radiation model calculates an emitted radiance for a given
wavelength and temperature, Planck’s formula[8] equation 2.17. Where C1 ≈
3.7418 · 10−16Wm2 and C2 ≈ 1.4388 · 10−2m◦K

Le,λ(x) =
2C1

λ5(eC2/(λT) − 1)
(2.17)

This allows us to calculate the spectral radiance L for a given wavelength λ
and position using the radiative transport, equation 2.18, using the blackbody
radiation as the emitted radiance.

(~ω · ∇)Lλ(x, ~ω) = −σt(x)Lλ(x, ~ω)+

σs(x)

∫
4π

p(~ω, ~ω′)Lλ(x, ~ω′)d~ω′+

σa(x)Le,λ(x,)

(2.18)

9

The scattering part, p(~ω, ~ω′), is neglected due to the high computation time and
the fact that there are few scattering effects in flames.

The achieved radiance is then mapped onto the XYZ-color space by using the
CIE standard observer 1931[1]. We then convert the XYZ colors to the LMS-
color space with the CAT02 transformation method [2], equation 2.19.LM

S

 =

 0.7328 0.4296 −0.1624
−0.7036 1.6975 0.0061
0.0030 0.0136 0.9834

XY
Z

 (2.19)

We also add an chromatic adaption at this step to get a result as if the observers
eyes and thereby vision have adapted to the intensity in the scene. Without this
step a too bright flame was produced which is the case when looking at a flame
with a normal to large sized pupil.

The LMS values are then converted back by inverting Equation 3. And fi-
nally the XYZ values are converted into the RGB-color space with an sRGB
conversion, Equation 2.20 [3].RG

B

 =

 3.2410 −1.5374 −0.4986
−0.9692 1.8760 0.0416
0.0556 −0.2040 1.0570

XY
Z

 (2.20)

2.5.2 Ray casting method

The radiative transport equation can be solved discreetly using ray-casting, by
traversing a ray that goes from the eye and then through the volume. The
temperature is then sampled several times along the ray. That gives us the
discrete formulate in equation 2.21 [8] and because we neglect the scattering
effect as mentioned earlier we can also neglect p(~ω, ~ω′).

Ln,λ(x, ~ω) = e−σt∆xL(n−1),λ(x+ ∆x, ~ω)+

Lλ(x, ~ω)p(~ω, ~ω′)σs∆x+

σaLe,λ(x)∆x

(2.21)

The equation tells us that we have to traverse the ray backwards from its end-
point back to the eye, to simulate the energy loss from absorption, scattering
and distance. We use a constant ∆x during the whole rendering.

The ray-caster is using a perspective to give a more realistic view, which is
calculated by first defining a forward, up and right vector (in unit lengths) from
the eye. These vectors is then used to calculate the near plane position that
belongs to a pixel (which has a u, v coordinate), equation 2.22.

10

~xnearplane = ~xeye + F ∗Dnearplane+

R ∗ u ∗ w
2

+ U ∗ v ∗ h
2

(2.22)

Where u and v is screenspace coordinates, defined from −1 to 1 and w and h is
the near plane width and height (which we calculate using a field of view cal-
culation). This near plane position can then be used to calculate the direction
of the ray.

To speed up the ray-caster we find the intersection points between the vol-
ume and the ray using a ray-box intersection algorithm. This allows us to have
a start (closest intersection to the eye) and end sample point, which avoid re-
dundant calculations outside the volume. If the eye is in the fluid, the near
plane position is the start point. If the start position differs from the near plane
position we have to add the energy loss between those positions.

To get a sense of depth in the rendering we render the sides of the volume
as walls. We calculate the radiance that is reflected from a given point at the
walls by integrate the radiance over all voxels incomming to that point, and
using that value as the start value for λ in Equation 5, because the point is at
the end position.

Chapter 3

Method

3.1 MAC Grid

The grid is stored as a 1D array of size N where Nx ∗Ny ∗Nz is the number of
cells in dimension x, y and z. To access a grid index (i, j, k) a transformation
from 3D to a 1D array index is made using the following formula:

f1D(i, j, k) = i+ jNx + kNxNy (3.1)

11

To avoid the half indices introduced in fig. 2.4, the following convention is used:

ui− 1
2 ,j,k

= u[f1D(i, j, k)]

ui+ 1
2 ,j,k

= u[f1D(i+ 1, j, k)]

vi,j− 1
2 ,k

= v[f1D(i, j, k)]

vi,j+ 1
2 ,k

= v[f1D(i, j + 1, k)]

wi,j,k− 1
2

= w[f1D(i, j, k)]

wi,j,k+ 1
2

= w[f1D(i, j, k + 1)]

Note that u,v and w represent different dimensions and could have different
lengths N , more specifically:

Nu = (Nx + 1) ∗Ny ∗Nz
Nv = Nx ∗ (Ny + 1) ∗Nz
Nw = Nx ∗Ny ∗ (Nz + 1)

3.1.1 Two Phase Flow

The ghost fluid method requires extra caution when velocities at arbitrary points
are evaluated. If the point is close to the interface chances are at least one
velocity value is on the other side of the interface when interpolating. The
balance equations in section (2.1.2), are used to enforce mass conservation. In
practice, a second velocity field ~uG (”ghost values”) is used in parallel to the
original velocity field ~u. The ghost values are found using the adjusted velocity
values described by following equation

∆V = (
ρfuel
ρburnt

− 1)S (3.2)

(3.3)

where ρ is the density of the fluid, the difference in density between burnt and
fuel is what causes the reaction at the flame front. S is the speed in which the
fuel is burning, a typical value is about 0.5 m/s. In general n̂ is the normal
pointing from the fluid region to the burnt region, in this case it’s the normal
of the level-set φ.

~uG(~x) =

{
~u(~x)−∆V n̂, if φ(~x) ≥ 0

~u(~x) + ∆V n̂, otherwise
(3.4)

In practice this can be done once at the beginning of the simulation by storing
the ghost values in a second grid or on the fly during simulation to save space.
No matter what implementation is used it boils down to a simple check of the
level set sign whether the point being used for interpolation is in the same kind
of medium (burnt or fuel) and picking the value from same grid if the medium
is the same, or choosing the ghost value otherwise.

12

3.2 Navier-Stokes

3.2.1 Self-Advection

Where more renowned methods of solving differential equations are failing to
find a numerical solution to eq. (2.12) (such as forward Euler for the time
derivative and central difference for the spatial derivative1), a method called
semi-Lagrangian method is often used to ensure unconditional stability. As the
name implies, it is motivated by taking a Lagrangian viewpoint (which treats
the fluid as a set of finite particles) in order to aid the Eulerian grid based
approach. Consider a particle at ~x, with velocity ~u(~x) = d~x

dt . If the particle
started from grid location ~xG and ended up at ~xP after time step ∆t, assuming
constant velocity we have that:

~u(t, ~xG) = ~u(t+ ∆t, ~xP) (3.5)

The same argument can be made backwards: there exists a particle at ~xP1
that

will end up at grid location ~xG1 , finding ~xP1 is done simply by tracing the
current velocity field backwards in time and evaluating the velocity field at that
point. Using simple Euler integration gives:

~xP1 = ~xG1 −∆t~u(~xG1) (3.6)

~u(t+ ∆t, ~xG1) = ~u(t, ~xP1) (3.7)

~xP1 is not very likely to be directly at a known grid point, so in order to find
~u(~xP1) some kind of interpolation has to be used. Trilinear interpolation is prone
to smooth the velocity field and better alternatives exists, such as Catmull-Rom
interpolation, which reduces the dissipation (smoothing) and boosts the accu-
racy to second order (trilinear has first order accuracy). Despite the shortcom-
ings of trilinear interpolation it showed to be adequate for convincing visual
results.

3.2.2 External forces

External forces are handled in a quite straight forward way. For each point in
the grid all forces are calculated and added together. After that we calculate
the new velocity by integrating the force. The gravitational force is applied
uniformly over all grid points that has fluid in them. Buoyancy is described by
a simple model that is directly connected to the temperature in each grid point.
We define it as equation 2.9. The vector z is a unit vector pointing upward.

fbuoy = α(T − Tair)z (3.8)

α is a positive constant, Tair is the ambient temperature of the room and T is
the temperature.

1Which is unconditionally unstable for any ∆t [4, p. 28]

13

3.2.3 Vorticity Confinement

Since we are using grids with finite spacing for our simulation, numerical dissi-
pation will cause non-physical damping of some of the fine detail energy in the
simulation such as vortices and small scale turbulence. We can add this missing
energy back into our simulation by increasing the speed of existing vortices in
the fluid. This method is called vorticity confinement and is implemented as in
[8]. First we calculate the curl ω of the original vector field.

ω = ∇× ~V (3.9)

We define normalized vorticity vectors ~N that will point from areas with low
vorticity towards areas with high vorticity.

~N =
∇|ω|
|∇|ω||

(3.10)

The resulting vorticity confinement force ~fvort to be added to the velocity
fields can then be calculated using these vorticity location vectors.

~fvort = ε∆x(~N × ω)) (3.11)

In equation 3.11 ε is some arbitrary scalar to control the magnitude of the
vorticity force being added. The dependency on ∆x ensures that as the grid
resolution is refined and ∆x grows smaller the vorticity confinement force added
decreases as well, resulting in the physically correct result being obtained. The
resulting force ~fvort is added to the velocity fields as an external force.

3.2.4 Projection

The projection step is a linear operation to update ~u according to the pressure, p.
This is done to maintain incompressibility as seen in the Navier-stokes equations,
equation 3.12, we have to for each timestep compensate for the pressure to make
~u divergence-free.

∇ · ~u = 0 (3.12)

To retrieve the pressure p we have to solve the equation (3.13) [4].

Ap = b (3.13)

Where A is the coefficient matrix, each row corresponds to one cell in the fluid.
So for large grids A will be extremly storage dependent. b is a vector with all
the negative divergences for each cell of the fluid.

After A and b are calculated and set they are inserted into a PCG-solver
(Preconditioned Conjugate Gradient), to retrieve the pressure vector p. As
mentioned earlier, when the new pressure-gradient is retrieved we can for in-
compressibility calculate the new ~u which will be needed for the next time step.

14

3.3 Advecting level set

The blue core does not only move with the velocity field ~uf , it is also burning
with the speed S in the normal direction. This means that the level set which
defines the blue core is advected by the velocity field ~w = ~uf + S~n, where ~n is
calculated using a central difference, eq. 3.14.

∂φ

∂x
≈ φ±x =

φi+1,j,k − φi−1,j,k

∆x
(3.14)

To ensure stability in equation 2.5 [9], the finite difference is calculated using
a upwind scheme, eq. 3.15. eq. 2.5 must also satisfy the time step constraint in
eq. 3.16.

∂φ

∂x
≈

{
φ+
x =

φi+1,j,k−φi,j,k

∆x , ~wx < 0

φ−x =
φi+1,j,k−φi−1,j,k

∆x , ~wx > 0
(3.15)

∆t < min

{
∆x

~wx
,

∆y

~wy
,

∆z

~wz

}
(3.16)

~n is not assured to be a unit vector since it is a numerical approximation
of a signed distance function, ~n is therefore normalized before usage. ~n could
even be evaluated as a null vector, in these cases a constant unit vector (0, 1, 0)
which is pointing upwards, is used.

3.3.1 Extrapolation

When accessing values outside the grid, extrapolation is needed to find out the
value of the signed distance function, e.g. when calculating the finite difference.
Some easy ways to do this is by using a constant value or by finding the closest
real value to it. More sophisticated methods is to make the value fulfil the
properties of a signed distance function as described in [4]. The method below
is a more simple way to mimic a signed distance function.

Find the closest real position pr to the position pe. The extrapolated value
φe is then calculated using φ(~pr) subtracted with the distance between pr and
pe, eq. 3.17. This means that the value is further away from the interface.

φe(~pe) = φ(~pr)− |pr − pe| (3.17)

This solution would be true if the extrapolated value were in the negative

15

normal direction from the real value.

Chapter 4

Results

4.1 Results

Figure ~ufuel/~uburnt grid T grid Tign/Tmax S εburnt Simulation/Rendering time (s)
4.1 30x60x30 90x180x90 2200/3000 0.1 60 5/64
4.2 15x30x15 90x180x90 2200/3000 0.1 60 3/64
4.3 60x120x60 90x180x90 2200/3000 0.1 60 30/64
4.4 30x60x30 90x180x90 1500/1500 0.1 60 5/64
4.5 30x60x30 90x180x90 2200/3000 0.25 60 5/64
4.6 30x60x30 90x180x90 2200/3000 0.025 60 5/64
4.7 30x60x30 90x180x90 2200/3000 0.1 100 5/64

Table 4.1: Settings and performance for the figures

Common settings for all figures are α = 0.15, εfuel = 16, ρfuel = 1.0, ρburnt =
0.01 and Tloss = 3000. All figures have been rendered on a computer using a
Intel 3770K CPU.

The fire in the figures shown does not consider the walls as boundaries in
this simulation and therefore moves through them. The fuel is injected as a
sphere in each frame for all but one of the figures.

16

(a) frame 9 (b) frame 50 (c) frame 144

Figure 4.1: The figure shows the result of the settings which are used as
reference settings for the rest of the figures.

(a) frame 9 (b) frame 50 (c) frame 144

Figure 4.2: The velocity grid has half the reference resolution, i.e the simulation
has half the resolution.

17

(a) frame 9 (b) frame 50 (c) frame 144

Figure 4.3: The velocity grid has twice the reference resolution.

(a) frame 9 (b) frame 50 (c) frame 144

Figure 4.4: Using a lower ignition- and max temperature than the reference.
The chromatic adaptation constant is set to 1 instead of 100.

18

(a) frame 9 (b) frame 50 (c) frame 144

Figure 4.5: Using a higher flame speed S than the reference.

(a) frame 9 (b) frame 50 (c) frame 144

Figure 4.6: Using a lower flame speed S than the reference.

19

(a) frame 9 (b) frame 50 (c) frame 144

Figure 4.7: Using a higher εh than the reference.

(a) frame 5 (b) frame 99

Figure 4.8: Injecting 5 smaller spheres with fuel instead of one big.

20

(a) frame 9 (b) frame 41 (c) frame 50

Figure 4.9: The blue core converts the radiance from the black body radiation
to purple radiance only.

(a) frame 2 (b) frame 9 (c) frame 13 (d) frame 25

Figure 4.10: Same as figure 4.12, but without fuel injection.

21

(a) frame 60 (b) frame 68 (c) frame 73 (d) frame 89 (e) frame 96

(f) frame 117 (g) frame 162 (h) frame 178 (i) frame 189 (j) frame 209

Figure 4.11: The black body only emits radiance for one wavelength at the
time.

22

(a) frame 4 (b) frame 8 (c) frame 20

Figure 4.12: A burning blue core visualised as a surface.

Link to a video which demonstrates all the results in the figures:
http://youtu.be/F40 rowaLQg

4.2 Discussion

Our implementation of the simulation and rendering achieves a detailed and
visually plausable fire. Physically based variables can be fine tuned to achieve
a wide variety of flame types by adjusting fuel injection speed, fuel ignition
temperature, flame speed, fuel density, cooling constants etc. Using world co-
ordinates for our simulation grids enabled us to have different resolutions for
different grids used in the simulation. For instance the temperature grid used
for rendering can have considerably higher resolution than the grids used for
the velocity fields in the same simulation run.

The design patterns used in our implementation is based on class inheritance,
which turns out to be considerable performace hit, and created a sometimes
unnecessary long simulation time. The current render method only samples from
the simulation grids and does not perform any intersection tests against meshes
or any triangles for that matter. We can therefore currently not render triangles,
meshes, and so on or anything not present as data in the grids. The implemented
calculation of the radiance values for the surrounding area is a quick method, but
costly in memory since the radiance is calculated for every wavelength in every
voxel, which is needed in order to calculate the mean radiance value. A more
correct method would probable implement a Monte Carlo method instead.

23

http://youtu.be/F40_rowaLQg

Bibliography

[1] Cie standard observer. 1931. http://www.cis.rit.edu/mcsl/online/cie.
php.

[2] Lms color space, cat02. 2013. http://en.wikipedia.org/wiki/LMS_

color_space.

[3] srgb. 2013. http://en.wikipedia.org/wiki/SRGB.

[4] R. Bridson. Fluid Simulation for Computer Graphics. 2008.

[5] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory eulerian
approach to interfaces in multi material flows (the ghost fluid method), 1999.

[6] N. Foster and D. Metaxas. Realistic animations of liquids, 1995.

[7] J.-M. Hong, T. Shinar, and R. Fedkiw. Wrinkled flames and cellular patterns,
2007.

[8] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen. Physically based modelling
and animation of fire, 2002.

[9] K. F. R. Courant and H. Lewy. Über die partiellen differenzengleichungen
der mathematischen physik, 1928.

24

http://www.cis.rit.edu/mcsl/online/cie.php
http://www.cis.rit.edu/mcsl/online/cie.php
http://en.wikipedia.org/wiki/LMS_color_space
http://en.wikipedia.org/wiki/LMS_color_space
http://en.wikipedia.org/wiki/SRGB

	Introduction
	What is fire?
	Different ways to simulate fire
	General fluid simulation background
	Previous implementations of fire

	Background
	Physically Based Model
	Blue Core
	Hot Gaseous Products
	Two-phase Flow and Ghost Fluid Method

	Level set method
	Navier-Stokes Equation
	Self-Advection
	External forces
	Projection
	Boundary Conditions

	MAC Grid
	Rendering
	Black-body radiation
	Ray casting method

	Method
	MAC Grid
	Two Phase Flow

	Navier-Stokes
	Self-Advection
	External forces
	Vorticity Confinement
	Projection

	Advecting level set
	Extrapolation

	Results
	Results
	Discussion

